
Hybrid Discrete-Continuous Markov Decision Processes

Zhengzhu Feng
Department of Computer Science

University of Massachusetts
Amherst, MA 01003-4610

fengzz Q cs.umass.edu

Abstract
This paper proposes a Markov decision process (MDP)
model that features both discrete and continuous state vari-
ables. We extend previous work by Boyan and Littman on
the mono-dimensional time-dependent MDP to multiple di-
mensions. We present the principle of lazy discretization,
and piecewise constant and linear approximations of the
model. Having to deal with several continuous dimensions
raises several new problems that require new solutions. In
the (piecewise) linear case, we use techniques !?om partially-
observable MDPs (POMDPS) to represent value functions as
sets of linear functions attached to different partitions of the
state space.

Introduction
Because of communication limitations, remote spacecraft
and rovers need the ability to operate autonomously. For
instance, the Mars Exploration Rovers (MER) will com-
municate with the ground only twice per Martian day and
must operate autonomously the rest of the time. Moreover,
the surfaces of planets are very uncertain environments. In
the case of Mars, there is uncertainty about the terrain, the
meteorological conditions, and the state of the-rover itself
(position, battery charge, solar panels, component wear,
etc.), resulting in a great deal of uncertainty in the dura-
tion, energy consumption and outcome of the rover's ac-
tions (Bresina et al. 2002). The need for autonomy and
robustness in the face of uncertainty will grow as rovers be-
come more capable and as missions explore more distant
planets.

Planning systems that have been developed for plane-
tary rovers and other NASA applications typically use a
deterministic model of the environment and action effects
(Muscettola et al. 1998; Jcjnsson et al. 2000; Estlin et al.
2002). Given a pre-specified set of goals, they produce a de-
terministic sequence of actions that attempts to achieve the
goals, assuming nominal conditions. They do not model the
uncertainty in the domain, but instead rely on replanning to
handle unexpected events. This straightforward approach
presents several drawbacks: (i) it does not address the com-
promise between the value of a goal and the risk attached
to it; (ii) it does not choose good branch points: waiting

*Research Institute for Advanced Computer Science.
Q S S Group Inc.
RIACS.

Richard Dearden* Nicolas Meuleaut
Rich Washington3

NASA Ames Research Center, Mail Stop 269-3
Moffet Field, CA 94035-1000

{dearden, nmeuleau, richw} Qemail.arc.nasa.gov

for a failure of the nominal plan is a poor strategy, since it
could be too late to do anything interesting; (iii) it does not
identify the benefits of "set-up actions," that is, actions that
must be integrated into the nominal plan only because they
could be useful if we had to revise our plans in the course
of execution (for instance, putting a spare tire in the trunk
before going on a car trip).

Decision theory is a principled framework for reason-
ing about uncertainty, rewards, and costs (Blythe 1999;
Boutillier, Dean, & Hanks 1999). It avoids the three pit-
falls of previous approaches: (i) it makes optimal trade-offs
between the value of goals and plans, and the risks associ-
ated with them; (ii) it selects optimal branch points;' (iii)
it captures the necessity of performing set-up actions each
time there is benefit in doing so. Therefore, decision the-
ory seems particularly suited to respond to the need for au-
tonomy in NASA applications. However, there are many
obstacles to a direct application of decision-theoretic algo-
rithms such as dynamic programming (DP) (Howard 1970;
Puterman 1994) to real domains such as planetary explo-
ration rovers (Bresina et al. 2002). In this paper, we fo-
cus on one of these difficulties: the existence of continuous
'state variables.

A characteristic of many of NASA application domains
is the existence of continuous state variables such as time,
battery levels, location, and available memory. Most of
them represent resources that constrain the planning prob-
lem. Moreover, most of the uncertainty in the domain re-
sults from the effect of actions on these variables. In the
Mars rover domain, the biggest sources of uncertainty are
the duration and energy consumption of actions and the
storage space that pictures will require after compression.
In contrast, the control framework is not completely contin-
uous because decisions are made at discrete decision steps.
Formally, the problem is that of a discrete-step decision
model, such as a Markov Decision Process (MDP) (Puter-
man 1994), with several continuous state variables. The
continuous variables make the state space continuously infi-

'It is commonly believed that decision theory is limited to
searching for an optimal policy, that is, a complete conditional
plan with one "branch" for each possible situation that could be
encountered at execution. However, recent work has shown that
it is possible to use a decision theoretic approach to find optimal
plans of other types, such as conformant plans (Hyafil& Bacchus
2003) and k-contingency plans (Meuleau & Smith 2003).

nite and prevent a direct use of classical solution techniques
such as DP.

The common practice to deal with continuous state vari-
ables in MDPs is either to use function approximators such
as artificial neural networks (Bertsekas & Tsitsiklis 1996;
Sutton & Barto 1998), or to discretize the continuous state
space more or less naively, which does not scale well to
multiple dimensions. Munos and Moore (Munos 2000;
Munos & Moore 2002) propose a formal model of a contin-
uous MDP, and the theoretical foundations and algorithms
for discretizing it. However, their model is a deterministic
MDP where actions must be applied over continuous du-
rations. The non-determinism in action outcomes results
only from the discretization. This does not fit the prob-
lem of planetary rover planning that uses discrete global
commands such as “drive from lander to rock l”, and is in-
trinsically rife with exogenous uncertainty (Bresina et al.
2002). In another approach, Boyan and Littman have pro-
posed a model of time dependent MDP (TMDP) that fea-
tures one uncertain continuous state variable representing
time (Boyan & Littman 2000). They approximate this
model using piecewise linear approximations and develop
algorithms that are able to efficiently solve a collection of
benchmark problems.

In this paper, we extend Boyan and Littman’s TMDP
by introducing hybrid MDPs (HyMDPs) that feature several
continuous state variables. We then introduce the princi-
ple of lazy discretization, which is implicit in Boyan and
Littman’s work. This idea is implemented in a functional
dynamic programing algorithm that backs up piecewise
constant approximations of continuous (value) functions,
from discrete state to discrete state. This algorithm is shown
to compare favorably to the naive discretization often used
in the literature. Further, we extend this algorithm to piece-
wise linear rewards and value functions. There are several
problems that appear wh& we want to generalize Boyan
and Littman’s work from one dimension to multiple dimen-
sions. The problems arise in representing and manipulating
partitions of the multidimensional continuous state space.
We propose original solutions to these problems using con-
cepts from computational geometry and techniques from
the theory of partially observable MDPs (POMDPS).

The Continuous Model
Model Definition
We propose a model of a hybrid MDP (HYMDP) that features
both continuous and discrete state variables.

Discrete state variables: Let z E X represent the dis-
crete part of a state. X is supposed finite. z may be a vec-
tor of discrete features with some structure. We do not need
that kind of representation in this work but do not exclude it.
If there is some structure in the discrete features, then our
algorithms can be modified to exploit it in the same way
as structured DP (Boutilier, Dearden, & Goldszmidt 2000).
We call x the discrete state of the process.

Continuous state variables: For all i E {1 ,2 , . . . Z}, B i
represents a continuous state variable taking its value in the

compact interval 0i of R (or a finite union of such inter-
vals). we call e = (el,ez,. . .el) E 0 = oi the
continuous state of the process. This work is motivated by
problems where the continuous variables represent almost
exclusively resources such as the time and energy available
to a rover. In common rover models, the rover position is
represented as a discrete location, and movement actions
are assumed either to lead to the destination (taking ran-
dom time and energy), or to fail and leave the rover in an
unknown location where back-up plans are used. However,
there is theoretically no obstacle to applying our approach
to any kind of continuous variable.

States: A (Markov) state s is an element of S = X x 0.
Note that we can easily extend the model so that the domain
of each continuous variable varies from one discrete state x
to another.

Actions: A is the finite set of actions available in each
state. Again, we can easily extend the model so that the
set of available actions varies from one state to another.2
This is necessary in Mars rovers domain because there may
be olinimum levels of resources required to s t a t actions
(Bresina et al. 2002).

State transitions: The transition probability of the MDP
is represented by the conditional probability distribution
T(s’ 1 s, a) on the arrival state s’ = (x’, e’), given the start-
ing state s = (z, e) and action a. This distribution must
reflect the possible monotonicity of some resource. For in-
stance, if there is only one continuous variable 81 repre-
senting the time remaining, which can never increase, then
T((x’,O‘) I (z,B),a) = 0 when@ > 8. Itisconvenientto
decompose the (joint) transition distribution T into:

a discrete marginal probability distribution on the arrival
discrete state: T, (x’ I s, a) E [0,1] is the probability that
executing action a in state s results in discrete state 2’.

For all (s, a) , CzEX T (x I s, a) = 1;
a conditional continuous distribution Te(6’ 1 s , a, 2’) on
the arrival continuous state e‘, given the starting state,
action and arrival discrete state. This one may in turn
be decomposed in a sequence of continuous condition-
als: TO, (0; I s , a, z’, 62%) where 02% = (@;, . . E

Rewards: A reward function R(s, a, s’) remesents the

2-1
@<2 = 0,.

.
reward for a transition from state s to state s’ under action
a. A priori, the reward functions may be any continuous
function. In practice, we have to assume some particular
shape to develop practical algorithms.

Bellman Equations

We are interested in maximizing the expected reward of a
plan over a finite horizon of H decision-steps. The flat Bell-

’To apply the solution techniques proposed hereafter, we have
to assume that, for each 2 E X , the set of actions available in
(2, e) is piecewise constant (w.r.t. e).

* man equation is

V * (S) =
r r 1

where V, (s) is the optimal reward from state s at decision
step n E {0,1, . . . H - l}, and Vx(s) = 0 for all s. It can
be decomposed in the following way:

Z’EX

U*(s, a,z’) =
(3)

with the conventions s = (%,e) and s’ = (z’, e‘) . Equation
(3) can in turn be decomposed by introducing a sequence of
intermediary value functions

Te(8’ 1 S, a, 2’) (R(s, a, s’) + V(S’)) de‘ ;
L e

UA(s, a, z’, 62%) =

1 e:€@,
(4) Te. (0: I s, a, 21, e : ~ ~ + l (s , a, 21, e\,+l)de:

forall i E {1,2, ... Z - l},and
1 Un(s, a, z’, @:A =

1 Ter (el I s , a, z/, e>l) (~ (s , a, s‘> + vn+i (SI)) .
e;E@1

(5)
The main obstacle to the application of existing MDP al-

gorithms (Puterman 1994; Sutton & Barto 1998) to our hy-
brid model is the convolution in step (3) (or (4) and (5)),
and the issue of storing in memory continuous multidimen-
sional value functions.

Discrete Approximations
Naive versus Lazy Discretization
A naive approach is to discretize the continuous variables
by imposing a grid (uniform or not) over the state space.
From this discretized model of states, discretized models
of action effects (transition probabilities and rewards) are
built. The problem is then solved as any other discrete prob-
lem. This straightforward approach becomes extremely
costly as the dimensionality increases. Th~s is because the
size of the discrete state space increases exponentially with
the number of continuous variables.

Figure 4 represents the optimal value function from the
initial state of a simple Mars rover problem as a function
of two continuous variables: the time and energy remain-
ing. The shape of this value function is characteristic of
the Mars rover domain, as well as other domains featuring
a finite set of goals with positive utility and resource con-
straints. Noticeably, it includes vast pZateau regions where
the expected reward is nearly constant. These represent

regions of the state space where the optimal policy is the
same, and the probability distribution on future history in-
duced by this optimal policy is nearly constant. Clearly,
there is no benefit in using a fine discretization grid in these
regions of the state-space, and in fact there is a large cost
added for doing so. In other regions of the state space-for
instance, the curved hump where there is more time and
energy available-a fine discretization helps increase the
quality of the value function. This observation motivates
the approach described below.

Following Boyan and Littman, we propose to solve
HyMDPs using lazy discretization, whose principle is the
following: instead of imposing a uniform discretization of
states and deducing a discretization of action effects from it,
we do the inverse. We start by constructing a discrete model
of action effects on continuous variables, possibly using the
same grid size (in each dimension) as in the naive approach.
In the Mars rover domain, it consists of discretizing the re-
source consumption of actions (which can easily handle de-
pendencies between different resources). Then, assuming
that immediate rewards are piecewise constant functions of
the continuous variables, a minimal discretization of the
state space is computed at the same t h e as DP is performed
(that is, backward from the planning horizon to the initial
time). The value function at each step is represented by
a piecewise constant function of the continuous variables,
and the set of pieces over which it is defined is kept mini-
mal to retain only the significant differences between states,
given the discrete model of action effects. States matching
the same piece of value function
0 have the same optimal pladpolicy,
0 generate the same probability distribution on future his-

tory, in terms of actions performed, rewards received,
and pieces of value functions traversed under this optimal
policy (assuming the discrete model of action effects).

Given a fixed discretization step in each dimension, lazy
discretization attains exactly the same accuracy as naive
discretization, but it avoids all redundant computation. If
the problem structure is such that a fine grid is required ev-
erywhere, lazy discretization will discretize the state space
uniformly. In this case, it will be outperformed by naive dis-
cretization, which is a more direct computation. However,
we argue that many problems (notably in the rover domain)
do not require a fine grid everywhere and thus favor the lazy
approach.

Functional Dynamic Programming
Formally, we assume that:
0 The discrete marginals on the arrival discrete state

T,(z’ [s , a) are piecewise constant (w.r.t. e) .
0 The conditional probability distributions on continuous

state variables Te(# [s , a , z’) are discrete with ajinite
set of possible outcomes. As in Boyan and Litmann’s
TMDPS, we distinguish two different ways to discretize
these probability distributions. For each action a and
each continuous state variable Bi that it impacts, the ef-
fect of a on 8i may be:

absolute: we assume that the set of possible final values
of Bi is finite and constant for all starting states. Equation
(4) becomes:

u;(s, a, d, e>i) =

~ ~ ~ (8 : I ~,~,~’,e;~)u;+~(~,~,~’,e~,+,) , (6)
e:€@;

where 0: is the finite set of values that 0, may take after
executing action a. We also assume that the probability
of each discrete outcome To, (0: I s, a, 2’) is piecewise
constant (w.r.t. e), and thus all conditionals that derive
from it are also;
relative: the discretization does not concern the set of
final values of e,, but the set of possible variations of Bi
resulting from action a. Denoting the variation of 0, as

= 0: - Bi, we assume that Si takes its value in the finite
set A: with probability 1. In other words, the set of pos-
sible values for e: varies continuously (and “linearly”)
with the starting state s. Equation (4) becomes:

u ~ (~ , a, 2 / , e;,) =

~ ~ ~ (6 ~ I ~,~,~’,e:~)u;+l(~,~,~’,e:,+~) . (7)
bi EA:

Here too we need to assume that the probability of each
discrete value for &, Tbi (Si I s, a, d), is piecewise con-
stant (w.r.t. e), and thus all conditionals derived from it
are also.

An action may have an absolute effect on some variables
and a relative effect on others. In the planetary rover do-
main for instance, the’action “wait until the battery is full”
has a relative effect on time and an absolute effect on en-
ergy. Conversely, the action “wait for the next communica-
tion window” has an absolute effect on time and a relative
effect .on energy.

To specify the shape of the immediate reward function
R, we use the following result:
Property 1 Under the hypotheses above, if the reward
function R(s, a, s’) is piecewise polynomial of order k
(w.zt. (e, e’)), then the value function at each step Vn(s)
is also piecewise polynomial of order k (w.zt. e).
Based on this result, we propose piecewise constant and
piecewise linear approximations of HyMDPs (k = 0 and
1). We then solve these approximations using a form of

fiinctiozol dynamic programing. This aigorithm performs
a finite number of back-ups, but each back-up involves an
infinite number of states. Instead of backing up scalars that
represent the value of a single state as in the classical DP,
it backs up piecewise constant or linear approximations of
the value of an infinite number of (continuous) states3 By
keeping the number of pieces as small as possible, we im-
plement the idea of lazy discretization.

This is a direct generalization of Boyan and Littman’s
work. However, there is a major difficulty.that arises when

3The same principle of functional DP is used in the classical
solution techniques for POMDPS (Kaelbling, Littman, & Cassan-
dra 1998; Cassandra, Littman, & Zhang 1997) and Boyan and
Littman’s TMDPs (Boyan & Littman 2000).

we move from a uni-dimensional model as the TMDP to
multiple dimensions. In a uni-dimensional framework, the
piecewise constant or linear value functions use pieces that
are simple intervals of the real line. These partitions are
thus relatively easily to store and manipulate. In multiple
dimensions, a minimal partition may contain pieces that
are not hyper-rectangles, and thus it is costly and difficult
to maintain. In the piecewise constant model, we rem-
edy this problem by computing an almost minimal partition
that uses only rectangular pieces. In the piecewise linear
model, a rectangular decomposition is not possible, since
the pieces of a minimal partition may have complex poly-
hedral shapes. Here, we borrow ideas from POMDP solu-
tion techniques to propose efficient algorithms. These ap-
proaches for piecewise constant and piecewise linear mod-
els are detailed in the next sections.

Piecewise Constant Model
Foundations
If actions have been discretized as explained above and
(immediate) rewards are piecewise constant, then the value
function at each step is piecewise constant. In this case,
an almost optimal solution can be obtained by discretizing
(naively) the state space using the same discretization steps
as for action effects. Alternatively, we can maintain a more
compact representation of the value function as a piecewise
constant function, and try to keep the corresponding state
partition as coarse as possible. As described above, we
choose the second approach.

As dealing with state partitions in multiple dimensions is
difficult and costly, we would like to restrict our attention to
partitions using only (hyper-)rectangular pieces, which are
relatively easy to store and manipulate. Therefore, we must
assume that all the partitions in the problem definition use
only rectangulrrr pieces (or can-be reduced to such), that is:

the partition into pieces over which the rewards
R(s, a, s’) are constant,
the partition into pieces over which the discrete
marginals T, (d 1 s, a) are constant,
the partition into pieces over ‘which the discretized con-
ditionals To; (0: I s , a, d, e>,) (absolute) or Tbi (& I
s, a, d,
in the case where the actions available vary from one con-
tinuous state to another, the partition in pieces over which
the set of actions available is constant.

(relative) are constant,

However, this is not sufficient since applying the max oper-
ator to two piecewise constant functions may create non-
rectangular pieces, even if both arguments contain only
rectangular pieces. This may happen in Eqn. 1, where we
compare Q-values represented as piecewise constant func-
tions: In other words, the coarsest partition in a piecewise
constant model is not necessarily composed of rectangular
pieces, even if all the hypotheses above are true. Therefore,

4Note that Eqn. 1 represents a crucial step in the DP algo-
rithm. The max operator implements Bellman’s optimality prin-
ciple, which is the fundamental principle used to prune the search
in the plan space.

we have to abandon either the minimality of the partitions
or the restriction to rectangular pieces. In this work, we pur-
sue the first approach and use a max operator that outputs a
non-minimal partition made only of rectangular pieces.

We now explain how the rectangular partitions are
backed up by our functional DP algorithm. Consider back-
ing up the piecewise constant value function Vn+l to com-
pute the function Un(s, a, z’) as in Eqn. 3. Given a state
s = (z, e), we want to determine the shape and position of
the piece of the new value function U, to which it belongs.
For this purpose, we first determine the biggest piece P,
that contains s and over which all parameters of the prob-
lem (rewards, discrete marginals, and discretized condition-
als) are constant. This is done by intersecting the partitions
enumerated above. Then, if action a has an absolute effect
on all continuous variables, we stop here: the piece of U,,
to which s belongs has the same shape and position as P,.
If a has a relative effect on some variables, then the parti-
tion of Vn+l may also play a role. As shown in Fig. 1, we
must consider all possible arrival states after applying a in
s (knowing we end up in z). Then, for each possible arrival
state s’, we calculate how much each coordinate of s’ could
vary in each direction before s’ moves to a different piece in
Vn+l. We then remember the minima of these values, over
all s’. They represent the bounds inside which the starting
state s can vary without any of the possible arrival states
changing piece. The piece of U,, containing s is then ob-
tained by intersecting P, with the hyper-rectangle defined
by these bounds and centered on s.’ Once the shape and po-
sition of this piece is determined, its value is computed us-
ing Eqn. 3. Then, the computation of the Q-values Qn(s, a)
from the utility function U,(s, a, z’) following Eqn. 2 is
straightforward. It requires intersecting the partitions of
Un(s, a, z’) for all 2’ E X. Finally, as stated above, the
max operator in Eqn. 1 outputs a new value function V,
that contains only rectangular pieces.

Data Structures
Even if they are made only of rectangular pieces, state-
space partitions are cumbersome to store and manipulate.
To more efficiently implement the operations of intersecting
partitions and merging pieces, rectangular state-space par-
titions are represented as &dimensional (kd-) trees (Fried-
man, Bentley, & Finkel 1977: Naylor, Amanatides. &
Thibault 1990). A kd-tree is a multidimensional general-
ization of the binary tree in which space is recursively split
by hyper-planes orthogonal to one axis. It is constructed
as follow: the root node T represents the whole continuous
state space 8. It is split by an hyperplane h perpendicu-
lar to one axis, which induces a binary partition of T in two
new regions r.ge and r . l t corresponding to the positive half-

’If the reward R(s , a, S I) varies as a function of the anival
state S I , then a similar process must be performed to determine
how much the starting state can vary without any of the possible
arrival states changing piece in the reward function. Equivalently,
one may consider the intersection of the partitions of Vn+l (*) and
R(s, a, *) (instead of V,+l alone) when performing the reasoning
of Fig. 1.

fluFl-$ _ _ _ _ _ - _ _ - r:

U , (s, a, x ’)
v n + I (s)

Figure 1: This figure shows how the partition of U, is com-
puted from the partition of Vn+l in the case where there are
two continuous variable and the action a has a relative ef-
fect on both. The partition on -the left side is the partition
defined by the data of the problem: The rewards, discrete
marginals and discretized conditionals are constant over the
piece P, to which the state s belongs. First we “project”
state s through action a, that is we determine all possible
arrival states after applying a in s (knowing the arrival dis-
crete state is 2’). In this case, there are two possible ar-
rival states denoted by t and u. Then we determine to what
piece of Vn+l the states t and u belong, and we measure
how far t and u are from the borders of their piece in each
direction (double arrows). The minima of these distances
in each direction (solid double arrows) represent the maxi-
mum distance we can move the starting state s without any
of the possibles ‘arrival states changing pieces. The piece
of U, containing s is obtained by intersecting P, with the
hyper-rectangle defined by these bounds and centered on s.

space and the negative (open) half-space respectively. Each
is represented by adding a child node to T . We then repeat
this process recursively on the children nodes r.ge and r . l t .

The kd-trees facilitate the operations of partition inter-
section. To compute the intersection of two kd-trees x and
72 defined over the same space, we divide one of them, say
5, at its root. The two sub-trees obtained, 7;.ge and x.Zt,
will be recursively processed later. We then take the cut-
ting plane 7; .h of the root of 71 and intersect it with the
other kd-tree 72. In the simplest implementation, one can
perform this operation by constructing a new kd-tree with
7;.h at the root and two copies of as its children. This
will be a correct kd-tree. However, we can do better by
simplifying each copy of 72. Since each is now defined
over a half-space delimited by the cutting plane 7; .h, we
can prune each copy by removing subtrees outside the half-
space. These subtrees can be identified as child nodes of
cuts outside the half-space. Thus we have implemented
two routines called PositiveHalf and NegativeHalf that
traverse the tree, compare the region that each tree node
represents with the half-space defined by a given cutting
plane, and prune away any subtree that is outside of the
correct half-plane. To finish the computation of 7; n 72,
we must recursively intersect the output of these functions
with the subtrees 7;.ge and %.It . The final kd-tree has

~~

0.0 4.0

Figure 2: An 2D example of a kd-tree representation of a
rectangular partition.

71.h as root, and 5 . g e n PositiveHalf(Z,71.h) and 5. l t
n NegativeHalf(z, 71.h) as childrenof the root. This pro-
cess is summarized in the algorithms of Fig. 3 . Here, the
function IntersectTerminal performs the actual computa-
tion such as addition or maximization of the data stored at
the leaves of the kd-trees.

Partition (7, h)
1. R.h = h
2. R.ge =PositiveHalf(7.ge, h)
3. R.Zt =NegativeHalf(T.Zt, h)
4. return R
Intersect (E , %)
1. if 5 or fi is terminal node
2. return IntersectTerminal(5,%);
3. P =Partition(%, 5 . h)
4. Rh = 5 . h
5. R.lt =Intersect(Z.Zt, P.lt)
6. R.ge =Intersect(71;.ge, P.ge)
7. returnR

Figure 3 : Algorithms for intersecting kd-trees.

Finally, the kd-tree representation is used to support a
piece-merging routine for piecewise constant value func-
tions. This routine just performs a depth first exploration
of the kd-tree and merges leaf nodes with the same parent
and the same value. Although this does not guarantee a
minimum rectangular partition, it provides a good trade-off
between simplicity and efficiency.

Piecewise Linear Model
The next step is to introduce piecewise linear reward func-
tions into the model. For example, to take into account
the illumination of a rock in a planetary rover problem, the
value of a picture could vary (piecewise) linearly with the
time of the day. Technically, the basic principle is to re-
place the scalar value attached to each piece of the reward
and value functions by affine functions of the continuous
variables. An affine function is a linear function plus a con-
stant. It is encoded by a vector of @+’ containing the 1
coefficients of the linear function and the constant.

The solutions for the piecewise constant case are not
sufficient in the linear model. In multi-dimensional linear

models, value functions are linear hyperplanes with arbi-
trary orientation. Thus applying the max operator in Eqn. 1
produces the upper envelope of a set of hyperplanes, which
results in pieces that may have arbitrary polyhedral shapes,
even if all the hypotheses of the previous section hold.

A similar issue arises in the theory of POMDPs. In this
model, the value function is defined over the belief space
as the upper envelope of a set of linear functions (Kael-
bling, Littman, & Cassandra 1998; Cassandra, Littman, &
Zhang 1997). The best solution techniques for POMDPS do
not keep an explicit representation of the partition induced
by the max over linear functions, but maintain the subset of
linear functions (called a-vectors) that are not dominated
within the belief space. The a-vectors implicitly define a
partition of the belief space. Instead of using an explicit
max operator, the algorithms implement Bellman’s opti-
mality principle by pruning the sets of a-vectors by remov-
ing dominated vectors, which represent linear functions that
are optimal nowhere in the belief space.

Borrowing from the POMDP theory, we solve the linear
model in the following way. We distinguish between pieces
of value functions that are created t!mugh the max oper-
ator of Eqn. 1 and pieces created through another process
(intersecting the partitions of immediate rewards, discrete
conditionals and continuous marginals, and the process il-
lustrated in Fig. l). For the latter case, we perform the
computation exactly as in the piecewise constant case. That
is, we explicitly compute the effects of Eqn. 2 and Eqn.
3 on the partition of the functions Q , and U,. As in the
piecewise constant case, if the hypotheses above hold and
the value function at step Vn+l contains only rectangular
pieces, then the pieces created at V, are all rectangular. For
the piecewise linear case, instead of having a single real
value attached, each of these pieces carries a set of vectors
of dimension 1 + 1 that represents a set of affine functions.
The value function over the piece is defined as the max-
imum of these affine functions. so, as for POMDPs, the
value function is piecewise linear convex over a piece. It
implicitly defines a sub-partition of the rectangular piece
into polyhedral pieces.

Equations 2 and 3 reduce to manipulation and production
of affine functions. For example, when computing Eqn. 3 ,
after having determined the shape and position of the new
piece (as in Fig. 1), we must compute its vector set. This
piece of U, projects to the set of pieces in Vn+l that the
arrival state can possibly belong to. The resulting vector set
for U, is made of a function applied to each element of the
cross-product of the vector sets of these pieces. In particu-
lar, we choose a vector among those in each possible arrival
piece (one vector per piece). These vectors are composed
through a simple process that implements Eqn. 3 and out-
puts a single affine function: (i) each vector is multiplied
by the scalar probability of a transition to the piece where
it has been taken; (ii) the vectors are summed to reflect the
integral in Eqn. 3; (iii) the linear function representing the
reward is added to the resulting vector.6 A similar process
is repeated for all possible choices of vectors at the arrival

does not represent exactly the order of arithmetics oper-

pieces. All the resulting affine functions are added to the
starttng piece.

Finally, Eqn. 1 is replaced by a mechanism of vector
pruning. To implement Bellman’s optimality principle, the
value functions are pruned from every affine function that is
not optimal somewhere on its piece. In other words, value
functions at each step are represented as minimal sets of
affine functions. Pruning is performed by solving simple

. linear programs. Given a set of affine functions F defined
over some piece, we build the minimal set M by testing
each affine functions f E F against M for complete domi-
nance using the following linear program:

variables: d,8, E O
max d

s.t. f(O) - m (O) > d, Vm 6 M
e;<e,<ef, i i i < i

where e,b and Sf are the boundaries over the i-th continuous
variable in the rectangle piece. Let (d*, 0*) be the solution
of the linear program. If d* < 0, then the affine function
f is completely dominated by M and is discarded from F .
Otherwise, we remove the vector from F that has maximal
value at 0’ and add it to M . We then repeat this process
until F is empty.

Many POMDP algorithms differ only in the way they
purge sets of a-vectors. Although they use the same kind of
linear program, they differ in the timing of pruning stages.
Similarly, different versions of our algorithm could be de-
rived, For instance, we could prune only the state-wise
value functions V,, or the intermediate value Qn and U,
too. Further research is needed to identify the best algo-
rithm. In our implementation, we prune every intermediate
function B la Incremental Pruning (Cassandra, Littman, &
Zhang 1997).

Simulation Results
We tested our algorithms on the simple Mars rover domain
presented in (Bresina et al. 2002). We used three variant
of this problem with one, two or three continuous variables
representing resources. Tables 1 to 3 compare the pefor-
mance of our piecewise constant functional DP algorithms
with the naive discretization approach.

Discre-
tization

20

LZY Naive
time(s) I pieces time(s) I pieces
0.05 I 262 1.74 I 8000

ations in Eqn. 3. However, given that the rewards are constants
over the piece of state-space of interest, the proposed computation
is equivalent and more efficient.

Discre- Lazy
tization time(s) pieces
25000 29.11 15060
30000 53.02 18029
40000 138.32 23931
50000 254.72 29802
60000 413.97 35636
75000 723.79 44312

Discre-
tization

50
100
150
200
250
300
350
400
450
500
550

Naive
time(s) pieces
17.90 25000
27.32 3oooO
51.84 40000
84.81 5oo00
124.99 60000
199.19 75000

Lazv
time(s)
0.05
0.21
1.75
2.70
4.21
10.59
12.45
16.62
63.59
8 1.48
153.58

pieces
3027
6070
33716
29786
46709
56483
69308
4921 1
142492
92999
180679

N;
time(s)
0.46
2.45
9.79
26.28
62.84
129.80
236.74
399.15
629.07
951.89
1396.22

~~

re - pieces
2500
loo00
22500
40000
62500
9oo00
122500
16oooO
202500
250000
302500

Table 2: Results in a 2D piecewise constant model.

40
60
80
100
120
140

0.53
1.81
4.65
11.90
24.15
67.23

1961
3363
4835
2877
7408
9274

70.97
. 790.98

4418.52
> 2hr
> 2hr
> 2hr

Table 3: Results in a 3D piecewise constant model.

As the tables show, our algorithm is slower than the naive
approach for the 1D problem, but considerably faster for the
2D and 3D problems, especially as the discretization be-
comes finer. In the case of the ID problem, the slower per-
formance is due to the overhead of tree-building rather than
the flat representation used in the naive algorithm. This is
particularly a problem as our kd-tree algorithm is optimized
for balancing multi-dimensional trees, and performs poorly
at balancing 1D trees.

For the 2D and 3D problems, the key advantage of our
algorithm is the vastly smaller number of pieces that the
lazy discretization produces. The savings here easily over-
come the extra cost of maintaining the tree structure. In
the case of the 50-discretization in Table 2, although the
final number of pieces is larger than the naive approach,
the early steps of DP are operating on value functions with
many fewer pieces, so the overall algorithm still runs much
faster. The optimal value function for the 2D problem with
500-discretization is shown in Fig. 4.

As one might expect, the piecewise-linear algorithm runs
much more slowly than the piecewise-constant algorithm,
or the naive algorithm. On the 2D problem, it runs in 14.4,
108, and 823 seconds respectively for discretizations of 50,
100, and 150 respectively. However if we have a linear
model, the piecewise-linear algorithm is solving it exactly,
while the naive approach (and a piecewise constant repre-
sentation of the same problem) are only approximating the
solution.

Figure 4: The piecewise-constant value function for the 2D
problem.

Conclusions
One important component of Boyan and Littman’s model
is unadressed by this work. TMDPS use a particular ac-
tion called dawdling that can be performed for any con-
tinuous duration. In a sense, this action accepts a contin-
uous parameter (the duration it should last) that is of the
same dimension (seconds) as the continuous variable of the
problem (time). There are different ways to generalize the
dawdling action in HyMDPs by adding continuous parame-
ters to actions. This is of particular interest for the plane-
tary rover domain. Current planning mode!s used at NASA
feature global actions like “drive to landmark 1” that can
either succeed if they do not consume more energy than
available, or fail if they consume too much. Unfortunately,
there is no way in the domain model language to command
actions like “dnve to landmark 1 but abort in the middle
of the drive if the remaining energy falls below threshold
t”. However, it is clear that the quality of the plans output
would greatly benefit from this ability. Moreover, such a
capability wcu!d bridge the gap cmently existing between
the planning models and rover execution languages, such
as CRL (Bresina er al. 1999), which allow actions to be in-
terrupted when some guard condition fails. Therefore, we
will propose models of parameterized actions for HyMDPs
in future work.

References
Bertsekas, D., and Tsitsiklis, J. 1996. Neuro-dynamic
Programming. Belmont, MA: Athena.
Blythe, J. 1999. Decision-theoretic planning. AIMagazine
20(2):37-54.

Boutillier, C.; Dean, T.; and Hanks, S. 1999. Decision the-
oretic planning: structural assumptions and computational
leverage. Journal of AI Research 11: 1-94.
Boyan, J., and Littman, M. 2000. Exact solutions to time-
dependent MDPs. In Advances in Neural Information Pro-
cessing Systems 13. Cambridge: MIT Press. 1-7.
Bresina, J.; Golden, K.; Smith, D.; and Washington, R.
1999. Increased flexibility and robustness of mars rovers.
In Proceedings of the Fijlh International Symposium on
Art$cial Intelligence, Robotics and Automation in Space.
Bresina, J.; Dearden, R.; Meuleau, N.; Ramakrishnan, S.;
Smith, D.; and Washington, R. 2002. Planning under
continuous time and resource uncertainty: A challenge for
AI. In Proc. of UAI-2002.
Cassandra, A.; Littman, M.; and Zhang, N. 1997. Incre-
mental Pruning: A simple, fast, exact method for partially
observable Markov decision processes. In Proc. of UAI-
97,54-61.
Estlin, T.; Fisher, F.; Gaines, D.; Chouinard, C.; Schaffer,
S.; and Nesnasg, I. 2002. Continuous planning and execu-
tion for an autonomous rover. In Proceedings of the Third
International NASA Workshop on Planning and Schedul-
ingfor Space.
Friedman, J.; Bentley, J.; and Finkel, R. 1977. An
algorithm for finding best matches in logarithmic ex-
pected time. ACM Transactions on Mathematical So@-
ware 3(3):209-226.
Howard, R. 1970. Dynamic Programming and Markov
Processes. Cambridge, MA: MIT Press.
Hyafil, N., and Bacchus, E 2003. Conformant probabilis-
tic planning via CSPs. In Proc. of ICAPS-03,205-214.
Jhsson, A.; Morris, P.; Muscettola, N.; Rajan, K.; B.; and
Smith. 2000. Planning in interplanetary space: theory and
practice. In Proc. of AIPS-2000, 117-186.
Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and acting in partially observable stochastic domains.
Art$cial Intelligence 10 1 :99-134.
Meuleau, N., and Smith, D. 2003. Optimal limited con-
tingency planning. In Proc. of UAI-2003,417426.
Munos, R., and Moore, A. 2002. Variable resolution dis-
cretization in optimal control. Machine Learning 49:29 1-
323.
Munos, R. 2000. A study of reinforcement learning in
the continuous case by the means of viscosity solutions.
Machine Learning 40:265-299.
Muscettola, N.; Nay&, P.; Pell, B.; and Williams, B.
1998. Remote agent: To boldly go where no AI system
has gone before. Art$cMl Intelligence 103(1-2):547.
Naylor, B.; Amanatides, J.; and Thibault, W. 1990. Merg-
ing BSP trees yields polyhedral set operations. Computer
Graphics (SIGGRAPH’90 Proceedings) 24(4): 115-124.
Puterman, M. 1994. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. New York, NY Wiley.
Sutton, R., and Barto, A. 1998. Reinforcement Learning:
An Introduction. Cambridge, MA: MIT Press.

Boutilier, C.; Dearden, R.; and Goldszmidt, M. 2000.
Stochastic dynamic programming with factored represen-
tations. Artijicial Intelligence 121:49-107.

